

Study of the dynamics of size of particles during trinitrotoluene detonation by VEPP-4M synchrotron radiation

I.A. Rubtsov^{1,4}, K.A. Ten^{1,4}, E.R. Pruuel^{1,4}, A.O. Kashkarov^{1,4}, B.P. Tolochko^{2,4}, V.V. Zhulanov^{3,4}, L.I. Shekhtman^{3,4} rubtsov@hydro.nsc.ru

¹ Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia
² Institute of Solid State Chemistry and Mechanochemistry SB RAS, Novosibirsk, Russia
³ Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
⁴ Novosibirsk State University, Novosibirsk, Russia

25–28 September, 2016

Problem

Acquisition of experimental information on the time history of condensed carbon nanoparticles at detonation of oxygen-deficient high explosives.

Methods

Dynamical recording of small-angle X-ray scattering (SAXS) of synchrotron radiation from the VEPP-4 accelerator. Application of highly-periodic synchrotron radiation (SR) from the accelerator complex VEPP-4 to measuring SAXS with exhibition for 0.1 ns allows tracing development of the signal in the course of detonation of high explosives.

Samples

Cylindrical samples of 30 and 40 mm TNT in diameter were under study.

Carbonaceous residue (soot) from the detonation of trinitrotoluene

Carbon Photoalbum: http://ancient.hydro.nsc.ru/srexpl/detcarbon/

Experimental setup. General scheme

Acceleration complex VEPP-3 – VEPP-4 is the basis of the detonation experiments

Fifth International Symposium on Explosion, Shock wave and High-strain-rate Phenomena.

Experimental base in BINP

1999 year – stand for study of detonation process on VEPP-3 beam line 0. Mass of explosion charge is 20 g., time between frames 500 ns. $E_{\rm eff} = 20$ keV.

2014 year – new station for study of detonation process on VEPP-4 beam line 8. Mass of explosion charge is 200 g., time between frames 610 ns. $E_{\rm eff} = 36$ keV.

Wiggler radiation at VEPP-4M $\,$

Wiggler (1) located between rotary magnets (2); additional coil (3).

 $B{=}1.2~\mathrm{T}$

Spectrum of the SR from the VEPP-4 7-poles wiggler

DIMEX – detector for study of the detonation processes

Detector DIMEX-3

Detection efficiency of the detector for photons of different energy

Real radiation spectr at SYRAFEEMA station

SAXS theory

SAXS from spherical particles:

$$I = I_0 \cdot [\frac{\sin(qR) - (qR)\cos(qR)}{(qR)^3}]^2$$

$$\vec{\mathbf{q}} = \vec{\mathbf{k}} - \vec{\mathbf{k}_0}, \ \mathbf{q} = 2k\sin(\theta) = \frac{4\pi\sin(\theta)}{\lambda}$$

where

R – radius of spherical particles,

 \vec{q} – scattering vector,

 2θ – scattering angle,

 \vec{k} – wave vector.

Scattering of monochromatic radiation on a homogeneous spherical particle

The form factor of the scattering by a spherical particle of 1 nm and 2 nm in diameter

Calculated SAXS signal

SAXS for spherical particles of different sizes with consideration of the real spectrum

SAXS with consideration of the spectrum and effective energy

Guinier approximation

In Guinier approximation

$$\mathbf{I} = \mathbf{I}_0 \exp(-\frac{(\mathbf{qR})^2}{5})$$

Taking the logarithm of the intensity

$$\ln(I(q, R)) = \ln(I_0) - q^2 R^2 / 5$$

we obtain a function which decreases linearly versus q^2 . We can determine the size of the spherical particle using the slope k of this line.

$$D = 2R = 2\sqrt{5|k|}$$

Experimental setup

Experimental assemblies

Setting

1 – attenuated straight beam, 2 – scattering on particles of ultra-fine diamonds (UFD).

Resolution recovery methods of particle size distribution of SAXS depends on the wavelength of the radiation and the detected scattering angle range $q_{min} \leq q \leq q_{max}$:

$$d_{\min} = \pi/q_{\max} = \lambda/4\sin(\theta_{\max}) \approx 2 \text{ nm}, d_{\max} = \pi/q_{\min} = \lambda/4\sin(\theta_{\min}) \approx 100 \text{ nm}$$

 $0.06 \text{ mrad} \le 2\theta \le 5.8 \text{ mrad}$

Distance from center of charge to detector L=3432 mm

1 detector channel (0.1 mm) = 0.02914 mrad

Processing of static experiments in Guinier approximation

The dependence of $\ln(I)$ versus q²: 1 - $\ln(I)$, 2 - approximation by straight line left: for UFD (k \approx -1.4, D \approx 5.4 nm) right: for aerogel (k \approx -0.93, D \approx 4.8 nm).

SAXS at trinitrotoluene detonation

Left: SAXS data during TNT detonation in the first 2.5 μ s for one experiment. Right: 1 – SAXS datd for TNT detonation at 6 μ s behind the front, 2 – Guinier approximation.

Experimental results

Average size of carbon particle versus time in detonation of a cylindrical TNT charge of 40 mm diameter (left) and 30 mm diameter (right): 1 – experimental data, 2 – smooth spline.

Thank you for your attention

http://ancient.hydro.nsc.ru/srexpl

This work was supported by Russian Foundation for Basic Research (project No. 16-29-01050).

Presentation:

Poster:

