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Abstract. The hybrid physico-mathematical model based on the two-component lattice 

Boltzmann method is proposed for computer simulations of “plasma” channels and vapour-gas 

cavities at electrical discharges in liquid dielectrics. In this model, two different states of matter 

are considered separately. The first component describes the flows of a dielectric liquid. The 

second component describes the "plasma" substance during its heating inside the channel.  

1.  Introduction  

During the electrical discharge in dielectric liquids, the conductive "plasma" channels arise in a liquid 

[1] that can be simulated by the lattice Boltzmann equations method (LBM, [2,3]). An analysis is 

carried out of the possibility of modeling using the LBM the evolution of these "plasma" channels, as 

well as the partial electric discharges within vapor-gas cavities in liquid dielectrics. The problem is 

that the parameters of the substance in the channels or cavities (temperature, etc.) differs many times 

from their values in the surrounding dielectric liquid. Therefore, it is difficult to ensure the stability of 

calculations for strong jumps in temperature and density at the interface. This problem arises for all 

methods of numerical simulations both for finite-difference methods and for LBM.  

In this paper, a hybrid physico-mathematical model describing the flow of liquid dielectrics with 

phase transitions at the boundaries of "plasma" channels is constructed. The basis for this is the variant 

of the LBM described in detail in [4,5]. The lattice Boltzmann method has been widely exploited and 

it is quite competitive with the traditional methods of computational fluid dynamics. The LBM has 

considerable advantages, especially for multiphase and multicomponent flows with complex topology. 

2.  Lattice Boltzmann Equation Method  

The lattice Boltzmann equation method treats fluid flows as an ensemble of pseudo-particles that can 

move on a regular space lattice. In this method, the values of distribution functions ),( tNk x  (pseudo-

particles) transfer during time step t  from a node to neighbor nodes tkk  ce  along the 

characteristics. For this purpose, the several discrete finite sets of particle velocities kc  for 

( bk ,...,1,0 ) were proposed [6]. For the one-dimensional three-speed model D1Q3, b = 3; for the 

two-dimensional nine-speed model D2Q9 on square lattice, b = 8; and for the three-dimensional 

nineteen-speed model D3Q19 on cubic lattice, b = 18.  
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The evolution equation for the distribution functions has the form  

),(})({),(),( tNNtNtttN kkkkk xxcx  ,      (1) 

where k  is the collision operator, and kN  is the change of the distribution functions because of  

the action of the external and internal body forces.  

The density   and the velocity u  of a fluid in a node are calculated as  
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The collision operator in the BGK form can be written as  

 /)),(),(( tNN k
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where   is the dimensionless single relaxation time. This collision operator simulates the tendency of 

the distribution functions to their equilibrium values [7]  
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Here, 3/)/( 2th   is the "kinetic" temperature of LBE pseudo-particles. The weight coefficients 

are equal to 3/20 w  and 6/12,1 w  for the model D1Q3, 9/40 w , 9/141 w , 36/185 w  for 

the model D2Q9, and 3/10 w , 18/161 w , 36/1187 w  for the model D3Q19 [6]. The kinematic 

viscosity of fluid for all these three models is equal to t )2/1( .  

To implement the body forces in the LBM, the Exact difference method (EDM) was proposed in 

[8,9]. The corresponding change of distribution functions during the time step has the form  

),(),(),( uuux  eq
k

eq
kk NNtN  .       (6) 

Here, /t Fuuu  is the value of the velocity after the action of the total force F  on a node 

x . If the body forces are present, the physical value of fluid velocity is not equal to the velocity u  

used in LBM calculations (3), but should be recalculated at a half time step [10] as 2/uuu  .  

Depending on specific problems, the periodic boundary conditions, boundary conditions without 

sliding or sliding on the solid surface, and boundary conditions of inflow/outflow can be used.  

In order to simulate the condensation of vapor into liquid and the reverse process, an attractive part 

of the intermolecular potential should be taken into account. For this purpose, it was proposed to 

introduce into the LBM the special attractive forces between the substances in neighbor nodes [11]. 

These forces related to the densities in nodes. Later, the pseudopotential model was proposed in which 

the total force acting on the fluid in a node was introduced as UF  [12]. Here,   ),( TPU  

is the pseudopotential that was defined using the specific equation of state for the fluid.  

The numerical approximation of the gradient of the pseudopotential is very important for correct 

describing the phase coexistence curve. In [4,5], the function U  was specially introduced. In 

this case, the total force can be written in the equivalent form as  2)21()(2 2 AAF . The 

so-called “combined” finite-difference approximation of this formula was proposed in [4,5] that can be 

written in the vector form as  
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The values of numerical coefficient   are equal to 1, 3/2 and 3 for the models D1Q3, D2Q9 and 

D3Q19, respectively [5]. The coefficients kG  are equal to G  for basic directions and to 4/G  and 

2/G  for diagonal directions for the models D2Q9 and D3Q19, respectively [4,5,13]. This “combined” 
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approximation (7) is more stable than two finite-difference approximations (local and “mean” value 

[4,5,13]) taken separately. The free parameter A  can be tuned for each specific equation of state. For 

the van der Waals equation of state, its optimal value is 152.0A  [4]. This equation can be written 

in the reduced variables as  
2~3)~3/(

~~8
~

  TP .         (8) 

Here, the reduced variables are crcrcr
~

,~,/
~

TTTPPP   , where crcrcr ,, TP   are the 

pressure, density and temperature at the critical point.  

For this pseudopotential approach, the density of fluid changes smoothly over several lattice nodes 

in a thin transition layer between liquid and vapor. In this method, the surface tension at interphase 

boundaries is present. It is known that the possibility of simulations using the algorithm of LBM is 

limited by the stability condition obtained in [9]  
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Here, sc~  is the hydrodynamic Courant number calculated from an equation of state of fluid, 
~

 is the 

dimensionless "kinetic" temperature of LBE pseudo-particles. Hence, the stability of LBM depends on 

the temperature and on the dimensionless parameter )/(
~ 2

cr
2

cr htPk  .  

The CUDA technology is used to parallelize the calculations on GPUs (two NVIDIA Titan-XP). 

3.  One-component model  

In the simplest version of the model, there is only one component in which a liquid-vapor phase 

transition is possible in accordance with the equation of state. This model describes two phases: liquid 

and "vapor". The "vapor" can be heated to a much higher temperature than the liquid dielectric that 

allows us to interpret "vapor" as "plasma".  

The heating and expansion of the "plasma" channel in a liquid dielectric with a uniform 

temperature distribution inside the discharge channel is simulated. Test calculations are performed 

using a one-dimensional model D1Q3 of lattice Boltzmann equations method. The periodic boundary 

conditions are used. Heating begins after a certain time 0t  for establishing the initial state of rest at 

6.0
~
0 T . The prescribed linear dependence of temperature on time 001.0/

~
dtTd  is used in this 

case. However, in this model, the highly excessive flows of material at the interface between the liquid 

dielectric and the discharge channel are changed considerably as the temperature of the "plasma" 

increases (figure 1, curve1). This makes it impossible to correctly simulate the process.  

 
Figure 1. Time dependences of mass of “plasma” in the channels (curves 1 and 3) and the diameter of 

the channels (curves 2,4). Curves 1,2 are for the one-component model. Curves 3,4 are for the hybrid 

two-component model. The moment of termination of heating is t . 

4.  Hybrid two-component model  

To avoid this parasitic fluxes of mass, the two-component physico-mathematical model based on the 
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LBM is constructed. In this model, two different states of matter are considered separately. The first 

component describes the flows of a liquid dielectric. The second component describes the substance in 

the discharge channel ("plasma") during its heating. In this case, the important property of the LBM to 

capture the interphase boundaries is also preserved. For two-component model, the mass of material in 

the channel is practically conserved (figure 1, curve 3). 

For the dielectric liquid, the van der Waals equation of state (8) is used. However, any other 

equations of state that allow a liquid-vapor phase transition can be used in this approach. The equation 

of state of an ideal gas is used as a model for the "plasma" in the discharge channel. Obviously, this 

equation of state of the material in the discharge channels or cavities should not have phase transitions. 

In order for these two equations of state to conform to each other in the gas limit 1~  , the 

compressibility factor )/( crcrcr RTVPZ   must be the same for both cases. For the van der Waals 

equation of state, the compressibility factor is equal to 3/8=0.375. Hence, for ideal gas in the channel, 

the corresponding equation of state in reduced variables is used in the form 3/
~~8

~
TP  . 

5.  Simulations for hybrid two-component model 

The heating and expansion of the "plasma" with a uniform temperature distribution inside the single 

discharge channel in a liquid dielectric is simulated. Test calculations are performed using a one-

dimensional model D1Q3 of the lattice Boltzmann equations method. The periodic boundary 

conditions are used in x  direction.  

To reduce the solubility of a gas ("plasma") in a liquid, the repulsive forces acting on the substance 

of each component at a node x  from the substance of another component that is present at neighbor 

nodes )( kex   are simulated. The total forces acting on the substance of components s  at a node x  

from the component   have the form  

k

k

kk
ss B eexxxF   )]([)]([)(  ,          (10) 

Here, )(  is the increasing function that depends on the density of the corresponding component. 

The coefficients kB  determine the degree of immiscibility of the components.  

For this hybrid one-dimensional model, the temperature in the discharge channel increases from the 

initial value 6.0
~
0 T  to some finite value 23

~
T  with the rate 001.0/

~
dtTd  and then remains 

constant. In this case, the initial density of the liquid on the coexistence curve is 31.2~
0   for the van 

der Waals equation of state. In accordance with the stability condition (9), the upper limit of 

temperature in the "plasma" channels is 23
~
T  at the dimensionless parameter 005.0

~
k . The 

corresponding pressure is 3.6~ p . 

       

Figure 2. Pressure distributions in the neighborhood of the "plasma" channel (a) at the end of 

heating 23000t  ( 23
~
T ) and (b) in the process of the further channel expansion 40000t .  

 

The pressure distribution in the neighborhood of the discharge channel after the moment of 

termination of heating 23000t  is shown in figure 2a. The temperature in the channel is 23
~
T  at 
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this moment.  
When the channel expands in a dielectric liquid in one-dimensional case, a shock wave is formed, 

followed by a compression wave. As the expansion of the channel continues after the termination of 

heating, the pressure inside the channel decreases, and a rarefaction wave is formed and propagates 

into the liquid (figure 2).  

 
Figure 3. Cross section of the "plasma" channel in liquid dielectric for two-dimensional two-

component model. Initial radius of the channel is 200 lattice units. 7.0
~
0 T . Lattice is 6000×6000.  

 
Figure 4. The distributions of density of matter ~  (curves 1) along the x  direction in central cross 

section of the system and the pressure distributions (curves 2) in the neighborhood of the "plasma" 

channel. t  10000 (a), 15000 (b), 20000 (c), 22500 (d).  

 

The model D2Q9 is used in two-dimensional simulations (figure 3). The periodic boundary 

conditions are used in x  and y  directions. The initial distributions of component densities are 

established for some time ( t 10000 time steps) before the process of heating the "plasma" to obtain 

the initial state of the system (figure 4a) that is close to the stationary state. In this case, the initial 
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density of the liquid on the coexistence curve is 14.2~
0   for the van der Waals equation of state.  

For two-dimensional case, the prescribed temperature in the discharge channel increases linearly 

from the initial value 7.0
~
0 T  to some finite value and then begins to decrease. The rates of the 

temperature increase and decrease are chosen as 001.0/
~

dtTd  and 002.0/
~

dtTd , respectively.  

After the temperature in the gas-vapor channel begins to increase, the divergent compression wave 

is generated in the liquid because of the channel expansion (figures 4b and 4c). After the temperature 

in the gas-vapor channel starts to decrease, the rarefaction wave is generated in the liquid (figure 4d).  

6.  Conclusion  

The hybrid physico-mathematical model based on the two-component lattice Boltzmann method is 

proposed for computer simulations of “plasma” channels and vapour-gas cavities at electrical 

discharges in liquid dielectric. Two different states of the matter are considered separately. The first 

component describes the liquid dielectric. The second component describes the "plasma" during its 

heating inside the channel. This model allows one to reduce considerably the parasitic flows of 

material at the interface between the liquid dielectric and the “plasma” of the discharge channel. 
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