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Abstract: In the present work we proposed a new dis-
crete stochastic model for computer simulation of the
lightning process using Cellular Automata. Two dif-
ferent states of conductive structure were introduced
that correspond to streamer and leader. The conduc-
tivity of the leader was supposed to be very high,
while the conductivity of the streamers was supposed
to be very low. The electric field potential was ob-
tained by solving Laplace equation in the region out-
side the equipotential leader structure. If the energy
released in some segment of streamer was larger than
some critical value, the transformation of streamer to
leader occurred. By applied this model for computer
simulation, patterns of lightnings have been obtained.

Keywords: lightning, computer simulation, sto-
chastic model, cellular automata.

1. INTRODUCTION

Lightning is a physical phenomenon with complex
evolution. The description of this phenomenon is thus
difficult, because many different and, sometimes, un-
known factors (like humidity, air density, atmospheric
ionization, etc.) should be taken into account. However,
all these uncertainties of the lightning process can be con-
sidered as stochastic features of the model approach. In
this sense, a new stochastic model was proposed for the
simulation of the formation of lightning tree.

Stochastic models are widely used to simulate the
propagation of a conductive phase before the breakdown
in solid, gaseous and liquid dielectrics. One of the first
model for computer simulation of the breakdown in
dielectrics was the Niemeyer — Pietronero — Wiesmann
(NPW) model [1] in which for the first time the
probability of streamer growth was related to local
electric field. In models, where the conductive tree was
considered as equipotential one and Laplace equation was
solved, the patterns of structures consisted rather of many
small branches. However, this was not in good agreement
either with the recordings of lightnings or with
experimental observations. In work [2] the authors for the
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first time tried to solve this problem and used the special
graphic post-processing to this purpose. They introduced
the width of the branches as a measure of the channel
luminosity and choose it proportional to the logarithm of
the charge flow.

Actually the problem is in absence of complete charge
relaxation along the branches of conductive structure. In
another words, the process of gradual charge relaxation
prevents electric field to enhance up to too high values.
Thus, streamer tips propagate in the local field that
greater but does not exceed several times the value of
initial electric field. To take this into account the ap-
proximate approach was used in [3] to simulate break-
down in dielectrics. In this work the stochastic cellular
automaton was used instead of exact calculations of elec-
tric field in the condition of absence of complete charge
relaxation. To take into account the charge relaxation
exactly it is necessary to solve the Poisson equation to-
gether with the equation of electric charge flow along the
branches of finite conductivity [4,5].

Up to date computer simulations of streamer growth
are based on the idea of space and time discretization.
New linear segments of streamer channels join sequen-
tially neighbor sites of some spatial lattice to the
streamer-leader structure. So, the shape of the streamer-
leader tree is represented by a connected graph consisting
of conductive bonds. ‘

It was proposed in [4] to separate all possible
stochastic models of streamer growth into two groups.
The first one includes the models in which only one bond
is added in a time step (single-element models). The
second group consists of models in which several bonds
may be generated in each time step (multi-element
models). For the first group the time step is equal to the
delay time of the appearance of the first new bond. In the
second ones the time step is constant and all the bonds
that have time to arise less than the time step are
accepted. The sequence of time intervals for each growth
step calculated in a proper way according to certain rules
is named as the “physical time”. From a physical point of
view, in the single-element models, it is supposed that the
growth of the first bond (streamer) suppresses the



development of the others at current time step. On con-
trary in the multi-element models, the appearance of any
bond does not influence on the development of the others.

2. CELLULAR AUTOMATA

In present work we develop the Niemeyer — Pietron-
ero — Wiesmann approach to simulation of gas discharges
[1] and propose a new stochastic model, taking into ac-
count the growth of the initial streamers and following
transition several of them to leader. To this purpose we
use cellular automata.

Cellular automata provide mathematical models for a
wide variety of complex natural phenomena, from growth
of patterns in biological systems to turbulence in fluids.
Briefly a cellular automaton consist of:

e A lattice of cells. Each cell can be in one of a finite
number of distinct states at each moment of time.
This lattice may be two- or three-dimensional and of
arbitrary size.

e Transformation rules from one state to another de-
pending on only neighborhood defined for each cell.

In this work the cells have three states and the cellular
automata are two-dimensional.

For the development of the model we use the well-
known fact that the lightning consist of a sequence of
streamer-leader phenomena. The channels of streamer are
assumed to have low conductivity and luminosity and
may transform to leader segments with high conductivity
and luminosity after some short time. Taking this into
account, the space between the cloud and the earth is di-
vided into cells. Each cell occupied by dielectric can be in
three states. The first state is initial one. It means that in
this cell nothing has happened. The second state corre-
sponds to the formation of the streamer in this cell. The
third state denotes that the transition of the streamer state
to the leader state has occurred.

Before the initiation of the lightning, all cells were in
the initial state (S1). Then, according to the model of the
streamer growth, some of them can be turn to the next
state (S2). According to the model for the leader growth,
some of the cells can be turn from the state S2 to the third
state (S3). This procedure was repeated until the lightning
approaches the ground.

At every time step only the cells, which are contigu-
ous to the electrode surfaces (“cloud” or “ground”) or to
streamer and leader structures could change state (from
S1 to S2). On the other hand only the cells which are
contiguous to the electrode surfaces or to the leader
structure could change their state from S2 to S3. Using
this approach we tried to simulate the sequence of
streamer — leader formation together with the step by step
leader propagation of the lightning.

3. MODELS OF STREAMER FORMATION

We also use the assumption that the lightning (leader
structure) can be considered as equipotential because of
its very high conductivity, while the branches of stream-

ers have very small conductivity and practically don’t
influence the electric field potential distribution. Thus,
the absence of complete charge relaxation along the
branches was modeled by neglecting of streamer conduc-
tivity. In this case the electric field potential outside the
leader structure can be obtained by solving Laplace
equation with boundary conditions on electrodes and
leader structure.

Two assumptions were made for the growth of the
streamer. Firstly the growth is stochastic in time and sec-
ondly the probability of a streamer formation is propor-
tional to some function of local electric field »(E), de-
pending on properties of the air. This function is closely
complied with the velocity of streamer tip propagation in
local electric field E in front of it i.e. u(E) = h +(E) [5].

For streamer growth criterion we used two multi-
element models in which several conductive bonds can
arise in each time step. One of them is the Field Fluctua-
tion Criterion (FFC) [3-5] for the growth of a new con-
ductive phase

E;>E,-¢ . (1)
Here E; is the local electric field in each lattice site. The
parameter E, depends on typical values of the humidity
and air density. A random value & is assumed to take into
account uncertainties of atmospheric conditions, initial
ionization, inhomogenities in air, thermal and other fluc-
tuations, including fluctuations of local microfields acting
on the molecules.

The probability distribution for fluctuations & is the
following

1(8) = %‘5—/—@ , @

that is 0 =—-gIn(£) . Hereinafter £ will be a random

number, which is uniformly distributed in the interval
from 0 to 1. In this case the function r(E) has the form

HE) = Aef'8  where A= le‘E*/g ) 3)
T
To each random value §; corresponds the time of appear-
ance of the i-th bond
In(1-exp(-3;/g))
7 =- R-% 8D, )
r(E;) '
Thus, the condition (1) for a new bond to grow is
equivalent to inequality 7; < 7.

The second model we used was Multi-Element Sto-
chastic Time Lag (MESTL) model proposed in work [4].
This new multi-element model is based on the single-
element Biller’s model [6] in which statistical time lags T;
are calculated for all candidate bonds

7, =-In(&;)/ r(E;) , &)

and then the physical time interval is given as 1t =
min{t;}. In MESTL model the physical time interval t is
chosen arbitrary and all the bonds that have 7; < 7 arise.

This model in difference of FFC model allows one to
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choose an arbitrary dependence of the growth probability
function r(E) on electric field including the form (3).

P Py

Figure 1. Possible new bonds of streamers in discrete
stochastic models with the limitation of the growth
TGCR.

Figure 2. The MESTL model without using of TGCR. It
is shown both leader and streamers branches. The initial
mean electric field E, = 0.3, t = 650.

Figure 3. The MESTL model without using of TGCR. It
is shown only the leader branches. E, = 0.3, ¢ = 650.

The currently available high-speed photographs of the
lightning phenomenon show that the lightning growth
usually occurs only from the tips of existent branches. So,
in some calculations a similar limitation of the growth
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was also used. It can be named “Tip Growth Criterion
with Ramification” (TGCR) [7,8]. The arising of the new
branches at each time step is allowed only from the tips
of existent conductive structure (Fig. 1).

The probabilities of arising new bonds P; depend on
local electric field. The ramification of branches may
have happened in this case with some probability.

4. MODEL OF LEADER FORMATION

After the formation of the streamer channels ahead of
the last leader tip, there is an increase of the current of
these filamentary channels as its length increases. When
in some filament the current achieve sufficient value, this
filament transforms into an arc, shorts circuits the other
filaments and becomes a leader [9]. The physical mecha-
nism of the streamer to leader transition is not very clear,
although several theories have been proposed.

Figure 4. The MESTL model with using of TGCR. It is
shown both leader and streamers branches. The initial
mean electric field was E, = 0.2, ¢ = 500.

Figure 5. The MESTL model with using of TGCR. It is
shown only the leader branches. £, = 0.2, ¢ = 500.

In this paper we used the theory proposed by I. Gal-
limberti [10], in which it is of importance the energy in-



put due to the current flow in the streamer filaments. It
was considered that this energy is stored mostly as a vi-
brational energy in the molecules, and then the relaxation
to the thermal equilibrium does occur. Relaxation time
constant depends on gas temperature and absolute hu-
midity. After some delay the increase of the temperature
causes thermal detachment of ions in the streamers, with
consequent increase of the stem conductivity.

Thus, streamer-leader transition occurs because of the
energy of electric field transfer to molecules by electron
collisions due to the current flow and then this energy
during some relaxation time transforms into thermal en-
ergy. If we consider a small segment of the streamer as a
cylinder with height 4, cross-section S, and the conduc-
tivity o (very small value), then the energy which is re-
leased in a time interval ¢ will be

t
W,=h-S o [E®)dt, (6)
i
where ¢, is the moment of time when this bond arose.
So, if the energy released is larger than some critical
value, a new leader segment is formed. This means that

the criterion of the formation of a new leader segment
could be

t
A[E}dt>w, (7
i

where W, is some critical value of energy release, and

A=h-S-o.

As the leader tip is approaching the ground it is ex-
pected that a return strike will be developed. The forma-
tion of this return strike is occurred due to the electric
field enhancement in the gap between the tip of the leader
and the ground. Of course, any protrusion on the ground
increases the electric field in this gap and enhances the
probability of return strike origination from its top. Any-
way, the appearance (or not) of the return strike as well as
the random position of its origination on the ground are
stochastic and were realized in the model.

5. CALCULATIONS

The problem was solved for model geometry in that
lightning occurs between two electrodes. The bottom
electrode (the ground) was at the electric potential ¢ = 0
and the upper one (the cloud) at ¢ = V,, where V; is con-
sidered the initial voltage difference between cloud and
ground. Periodic boundary conditions in the x direction
were used. The mean initial electric field in the gap was
Ey = Vy/d, where d is the length of the air space between
cloud and ground.

The simulation was carried out in the rectangular area
on lattices up to 200x200. The electric field in the region
outside of the leader structure was calculated at every
time step by solving the Laplace equation

2 2
%;5(0' + %yT“’ =0 (8)

with the boundary conditions on electrodes and leader
structure.

At every time step new streamers may arise from the
tips of existent conductive structure and the transition of
one or more streamers to leader may occur. This proce-
dure continues until the leader approaches the ground.

Eight permissible directions (including diagonals) of
channel propagation was used at each site of a square
lattice to diminish the anisotropy of the growing struc-
ture.

The special procedure was used to delay the growth of
diagonal bonds to the next time step with the fixed prob-

ability p =2-+/2=0586 [5]. At this value the mean
streamer propagation velocity in diagonal direction

<u>= [\Eh(l -p) +—\L§_-{1—p] HE)=hrE). (9)

Hence, streamer propagation velocity was ensured equal
for all bonds including diagonals, provided that the pro-
jection of mean electric field to the corresponding direc-
tion was the same.

The reliable physical or experimental data must be
used to choose the complimentary set of scales for space,
time and electric field (or voltage). However, the decision
has be made not to use such data but to develop a general
model which may be used for simulation either of light-
ning discharges or of long air gaps breakdowns. These
three scales can be defined in each particular case, which
has to be simulated. Consequently in this study hereinaf-
ter some arbitrary units are used for space, time and elec-
tric field.

6. RESULTS

In every calculation we observed the statistical time
lag of lightning origin. The mean time lag is closely re-
lated to the probability of lightning origin in time. At
given geometry it sharply depends on the voltage differ-
ence.

The growing conductive structure consists of many
individual streamers that propagate in a competitive way.
Some of them subsequently transformed into the leader
steps. A short pulse of current accompanied each leader
step. .

In the figures 2 and 3 it is shown the typical results of
lightning simulation in the MESTL model without using
of TGCR. The probability function for this model was

r(E)=(E/E,)". For these calculations the parameters
were n =7, E, = 1. The electric field is measured in ar-

bitrary units, as already has been mentioned above.

In the figures 4 and 5 the similar results are shown for
the same model with the limitation of the growth TGCR
(growth only from the tips).

In the last case one can see clearly that the growth of
small-scale patterns of streamer branches does not occur
from leader stem at initial stage of “lightning” propaga-
tion.
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For comparison in the figure 6 the results obtained
with FFC model are shown. For these calculations the
parameters of FFC model were E, =1 and g = 0.07. The

initial mean electric field was E, = 0.2.

Figure 6. The FFC model with using of TGCR. It is
shown both leader and streamers branches. ¢ = 1450.

The initiation and growth of lightning from the cloud
is shown in the figure 7. The initial mean electric field
was E, = 0.25.

The formation of the return strike was observed in
several simulations just before the lightning approached
close to the ground.

Figure 7. The FFC model with using of TGCR. It is
shown only the leader branches. ¢ = 3360.

7. CONCLUSIONS

The discrete stochastic model of lightning growth
proposed here describes adequately main stochastic fea-
tures of lightning (for example, statistical time lag and
random place of lightning origin, asymmetry and non-
reproducibility of detailed conductive structure, tooth-like
shape of current and light pulses, return strike, etc.). This
model can be useful for computer simulation of this phe-
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nomenon and very promising for application in the light-
ning protection technology.

The results obtained with FFC model qualitatively not
differ from results obtained with MESTL model (figures
4 and 6). It confirms the equivalence of these two criteria
of streamer growth.
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