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Abstract: In the present work we present two different
models developed for the simulation of prebreakdown
phenomena in liquid dielectrics and long air gaps. In
both cases extensions of classic Cellular Automata were
used. In the case of gas dielectrics two different states of
conductive structures were introduced, corresponding to
streamer and leader channels. Cellular Automata with
stochastic transformation rules were used. In the case of
liquid dielectrics, the cellular automaton with anisotropic
structure factor was used instead of the electric field
calculation.
Keywords: cellular simulation,
breakdown process.
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1. Introduction

Breakdown in solid, liquid, and gaseous dielectrics are of
great importance in designing power systems, because it
defines the limitation of the insulation in cables,
transformers, electrical rotating machinery etc. Breakdown
is very complex physical process and it depends on dielectric
material, electrode configuration, applied voltage etc. In
small gaps the application of some critical voltage has as a
result the formation of streamers, which are conductive
channels of low conductivity. These channels propagate
inside the gap and the breakdown occurs when these
channels reach the opposite electrode.

In long air gaps the physical process which lead to a
breakdown is considerably different. The main characteristic
of the discharge is that the conductive tree can propagate in
low electric field by reproducing self-sustained conditions
across the gap during its propagation. Above some critical
voltage the discharge process initiates with the formation of
the streamer channels. Streamers propagate over some
distance until local electric field in front of them reduces to
some value below critical.

Another phenomenon is taking place simultaneously. Due
to the current flowing along the streamer channels, there is
an increase of the temperature because of Joule heating.
Above 1500°K thermal detachment of negative ions
enhances the conductivity and lowers the internal field,
leading to the formation of the leader. The leader channel
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propagates along the gap with the leader corona (streamer
channels) in front of its tip [1, 2].

In this paper, we present two different models, developed
for the simulation of the breakdown process. The first model
simulates the breakdown of liquid dielectrics concerning
small gaps [3] and the second simulates the breakdown in
filled with gas long gaps [4]. Each model is taking into
account the different physical mechanisms involved in each
case and the computer realization was made using Cellular
Automata.

2. Cellular Automata

Cellular Automata (CA) are models developed for the
simulation of the evolution of complex natural systems.
They can be applied in modeling of physical systems where
space and time are discrete and interactions are only local.
CA first introduced by von Neumann [5] and despite their
structural simplicity may exhibit complex dynamic behavior.

Briefly a cellular automaton consists of:

e A lattice of cells. Each cell can be in one of a finite
number of distinct states at each moment of time. The
lattice may be two or three-dimensional and of arbitrary
size.

e Transformation rules from one state to another
depending only on the states of neighborhood cells.

The state of a cell at the next iteration +1 is computed
according to some function F which is a function of the
states of neighboring cells at time moment ¢. Thus, in the
case of a two dimensional CA, the local rule for the
determination of the state of the cell S;; at time moment #+1
is of the form:

&1 t t t
Si,j =F(Si—l,j—l' . Siﬂ" . Sikl,_ﬂ-l) . (D

The neighborhood of the cell i,j is illustrated in fig. 1. In
practice CA is a computer program in which:
e A matrix is created with specific element values
(integer, real, etc.).
e A function or a set of functions, used to change the
values of the matrix elements, is defined.
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e The function is applied repeatedly to the matrix, each
time changing the values of all the matrix elements
simultaneously.

For the development of the models presented in this paper,
we used an extension of classic CA, where the CA
transformation rules uses not only the states of the cells but
also the values of some physical parameters in local
neighborhood of a given cell, like electrical field potential.
Thus the local rule for the determination of the state of the

cell S;; at time moment +1 is of the form:

St

_ t
_LJ”F(S lp)’

()

where §' are the current states of CA and p is set of physical
parameters in this and neighbor cells. This modification of
CA is necessary because the transition of a cell from one
state to another is strongly depended on physical parameters
like local electric field.

i-Li+1| i+l Jirl+1

-1 ij i+l

iLj-1{ ij-1 JivLi-1

Figure 1. The neighborhood of the (i, j) cell.

3. The models

3.1 Breakdown in liquid dielectrics

Extensive experimental data, like statistical time lag
between application of the voltage over the gap and the start
of breakdown, the asymmetric shape of streamer structures,
etc, indicate the importance of stochastic processes in the
breakdown of liquid dielectrics. Several authors related the
probability of streamer growth with a function of local
electric field [6, 7]. The distribution of the electric field
potential was calculated by solving the Laplace equation in a
region between the electrodes outside of a conductive
structure that was considered to be equipotential.

Our study was based on an initially uniform electric field.
For fast nanosecond breakdowns in liquid dielectrics, the
charge relaxation along the conductive branches is not
complete. Thus, the local electric field ahead of the streamer
tips is greater than the initial electric field but does not
exceed it several times. The last circumstance makes it
possible to use the cellular automaton with anisotropic
structure factor instead of exact calculation of the electric
field [3].

It is assumed that the growth process is described
approximately by the following criterion for the growth of a
new streamer segment

E>E, -6 , N G)

where E is the electric field potential at each lattice point,
and E. is a characteristic parameter of the material. A
random value & is assumed to take into account
inhomogenities of the dielectric, thermal and other
fluctuations, the statistical nature of the excited states of the
vibrational degrees of the molecules, fluctuations of local
microfields acting on the molecules etc. The criterion for the
streamer growth (3) is known as Field Fluctuation Criterion
(FFQ).

The probability density for fluctuations & is the following:

_exptd /g)
g

£6) 4)

The physical meaning of g is the characteristic width of the
distribution (4) of random variable §.

Local electric field E depends on the applied voltage and
the geometry of the gap and also on the local configuration
of the conductive structure in the neighborhood of the point
in question. The local electric field is calculated from a table
of fundamental cell configurations of the states in neighbor
cells:

where E; is the initial electric field. The fundamental cell
configurations are illustrated in fig. 2.

mallansil Es R ns Iaad
mH O EE

k=2 1.6 1.4 1.2 1.0

1.0 0.6 0.6

Figure 2. Anisotropic cellular automaton. The central cell
becomes conducting if E>FE.-8, where E=kE,,

Using this method it is possible to calculate the electric field
in an easy way without solving the Laplace or the Poisson
equations.

After the initial conditions were specified, the system
evolves in time. The cellular automaton produces one or
another configuration of conducting structure by Monte
Carlo method.

3.2 Breakdown in gaseous dielectrics

Breakdown of gases in the case of small gaps can be
handled by the same way as it has been applied for liquid
dielectrics. The same criterion for the growth of the
streamers (FFC) can be used, changing of course the values
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of the parameters. The electric field can be calculated by
solving either Laplace or Poisson equations.

The breakdown process in long air gaps is considerably
different than small gaps. The first is the growth of streamers
in front of the leader tips and the second is the streamer-to-
leader transition. Thus a new model was developed. taking
into account two physical processes, which occur during the
discharge.

The leader structure was considered to be equipotential
because of its high conductivity, while the branches of
streamers have very small conductivity and practically don’t
influence the electric field potential distribution. Thus, the
absence of complete charge relaxation along the branches
was modeled by neglecting streamer conductivity. In this
case the electric field potential outside the highly conductive
structure can be obtained by solving Laplace equation with
boundary conditions on electrodes and highly conductive
structure.

Two assumptions were made for the growth of the
streamer. Firstly the growth is stochastic in time and
secondly the probability of a streamer formation is
proportional to some function of local electric field r(E),
depending on properties of the dielectric. This function is
closely complied with the velocity of streamer tip
propagation in local electric field E in front of it i.e. u(E) = h
n(E) [8].

For the streamer growth the FFC was used as in the case
of breakdown in liquids. The difference was that the local
electric field was calculated by solving the Laplace equation.
However, it was necessary to develop a criterion for
streamer-to-leader transition. For the transformation of a
streamer to highly conductive arc, it is of importance the
energy input inside a streamer segment. When in some
filament the energy release due to current achieve sufficient
value, this filament transforms into a highly conductive arc.

If we consider a small segment of the streamer as a
cylinder with height A, cross-section s, and the conductivity
o (very small value), then the energy, which is released in a
time interval t, will be

tt+t
w,=hso | E®’dt, (6)
&
where 1, is the moment of time when this bond arose.

So, if the energy released is larger than some critical
value, a new highly conductive segment is formed. This
means that the criterion of the formation of a new highly
conductive segment could be

t+t
A| EXdbw, , (7

g
where W, is some critical value of energy released, and

A=h-s0.

For the development of the model we propose to
consider that the change of electrical conductivity along the
branches can be approximated as a sequence of low
conductive (streamer) and highly conductive phases. Taking
this into account, the space between the electrodes is divided
into cells. Each cell occupied by dielectric can be in three
states. The first state is initial one. It means that in this cell

nothing has happened. The second state corresponds to the
formation of the streamer in this cell. The third state denotes
that the transition of the “streamer” state to the highly
conductive state has occurred.

Before the initiation of the breakdown, all cells of the
dielectric were in the initial state (SO). Then, according to
the stochastic criterion for streamer growth (3), some of the
cells can turn into the next state (S1) that corresponds to the
streamer. According to the model for the streamer
transformation to a highly conductive phase, some of the
cells can transform from state S1 to states S2 or S4 that
corresponds to the cells of downward and upward leaders,
respectively. It was assumed that each type of leader is
equipotential.

At every time step only the cells, which are contiguous to
the electrode surfaces or to streamer or to the highly
conductive phase could change state (from SO to S1). On the
other hand only the cells which are contiguous to the
electrode surfaces or to the highly conductive phase
structure could change their state from S1 to S2 or S4. The
procedure proposed was repeated until the conductive tree
approaches the opposite electrode.

We used the distinct states of the cellular automaton not
only to describe cells that initially were in the dielectric state
but also to indicate cells that belong to the upper and lower
electrodes (the states S3 and S5).

Such formalization simplifies significantly the logical
structure of the computer program. It allows us to consider
all cells in a standard way. For example, in PASCAL
language, we use the following simple iterative procedure
during solution of the Laplace equation:

case S[i,j] of
0,1: Fn[i,j]:= (F[i+1,j] F[i-1,j] F[i,j+1] F[i,j-1])/4;
2,3: Fn[i,j]:=Fi0;
4,5: Fnli,j]:=0;

end;

where the letter F represents the electric-field potential @
and Fn is the values of electric field potential at next
iteration step. The configuration of electrodes was defined
initially by assigning values “3” or “5” to some elements S,
of our array of cellular automaton states.

Of course, in reality, the conductive tree consists of the
small linear segments, rather than of square elements. To
describe this, we introduced a local coordinate system in the
vicinity of each cell. The first digit denotes the x coordinate
of the neighbor cells (column number), and the second digit
denotes the y coordinate of it (row number). Hence, each
neighbor cell has a unique value. Thus, this information was
kept in the cell as an additional set of states of the cellular
automaton to indicate one of the neighbor cells, from which
the new conductive bond originated. In this case, it is
possible to use this information, for example, to draw
segments of the conductive structure, and to consider the
structure as a graph consisting of conductive bonds (fig. 5).
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4. Calculations

The parameters of FFC model in the calculations of fast
breakdown in liquid in uniform electric field were E.=1 and
2=0.08. The problem was solved in the rectangular area.
Typical resuit of simulation is shown in fig. 3.

!

Figure 3. Example of simulation of fast breakdown in liquid
in uniform electric field. The electric field was E,=0.54,
E.=1, g=0.055. Lattice size was 100x100, =97.

The simulation of breakdown in air gaps was carried out
in the rectangular area on lattices up to 200x200.

The problem was solved for model geometry in that
breakdown occurs between two electrodes. The bottom
electrode was at the electric potential ¢ = 0 and the upper
one at @ = V,, where V; is the applied voltage. Periodic
boundary conditions in the x direction were used. The mean
initial electric field in the gap was E, = Vy/d, where d is the
gap length.

The electric field in the region outside of the highly
conductive structure was calculated at every time step by
solving the Laplace equation

e % _

X 3y
with the boundary conditions on electrodes and highly
conductive structure.

At every time step new streamers may arise from the tips
of existent conductive structure and the transition of one or
more streamers to highly conductive phase may occur. This
procedure continues until the conductive tree approaches the
opposite electrode.

Eight permissible directions (including diagonals) of
streamer propagation was used at each site of a square lattice
to diminish the anisotropy of the growing structure. The
special procedure was used to delay the growth of diagonal
bonds to the next time step with the fixed probability

p=2— \/— =0586. At this value the mean streamer
propagation velocity in diagonal direction

J2h

<u>= (\/Eha— P+ = p|r(E)=hr(E). )

0 (8)

Hence, streamer propagation velocity was ensured equal for
all bonds including diagonals, provided that the projection of

mean electric field to the corresponding direction was the
same.

The reliable physical or experimental data must be used
to choose the complementary set of scales for space, time
and electric field (or voltage). These three scales can be
defined in each particular case that is to be simulated. To
emphasize the common features of the phenomena, in this
study some arbitrary units are used for length, time, charge,
voltage, and electric field.

5. Results

In every calculation the statistical time lag of the
conductive tree origin was observed. At fixed geometry it
sharply depends on the voltage difference.

The growing structure consists of many individual
streamers that propagate in a competitive way. Some of
them subsequently transformed into the highly conductive
phase. A short pulse of current accompanied each event,
because of the stepwise change of full charge of conductive
structure.

In figs. 4 and 5 the results of the simulations of a
breakdown in long air gap is illustrated, for point-plane
geometry. The parameters of FFC model in the calculations
were Ex=1, g=0.08, and E£,=0.3, 0.2.

1 1
BRI

Figure 4. Simulation of a discharge in long air gap. The
initial mean electric field was E,=0.3. Lattice size was
40x40, =1120.
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Figure 5. Simulation of a discharge in long air gap with
initial mean electric field £,=0.2, =1450.

As it was expected with a reduction of mean electric field
there is also a reduction of the mean propagation velocity of
the conductive structure.

6. Conclusions

The stochastic models of conductive tree growth proposed
here, describe main features of breakdown in gaseous and
liquid dielectrics, such as statistical time lag, random place
of origin, asymmetry and non-reproducibility of conductive
structures etc, With a careful calibration of their parameters
they can be used mainly for the determination of the
breakdown voltage for various shapes of applied voltages
and different gap configurations.
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