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FRACTAL STRUCTURE FORMATION IN EXPLOSION 

A. P. Ershov and A. L. Kupershtokh UDC 530.1 +538.91 +662.215.1+666.233 

In the explosion of condensed explosive materials the release of free carbon is typical. The chemical reaction can proceed 

under conditions of diamond stability. Some results relative to the diamond phase have been described in [1, 2]; experiments performed 

in 1963-1965 are recalled in [3]. Note has been taken in [1-5] of  the ultradispersion in diamond powders. The powder grains are 

conglomerates consisting of particles with characteristic dimensions of about 40 

A two-stage model of  particle growth in the condensed phase during an explosion [6, 7] has been introduced in the present 

study. By means of coagulation small compact particles are formed in the first stage, while in the second stage the particles are 

combined into aggregates (clusters) exhibiting a fractal structure, which is confirmed by data from small-angle x-ray scattering. 

The possibility of  a fractal nature for aggregates in stored powders is cited in [2, 8]. 

In our opinion, the formation of fractal clusters must take place directly behind the detonation front, i.e., within microseconds. 

This leads to consequences which may be important in understanding the physics of detonation. 

In an explosion free carbon is released within --0.1 #sec, i.e., the time of the chemical reaction within the front of the detonation 

wave. The charactristic time t H of hydrodynamic disintegration is expressed in units of microseconds. The quantity of carbon may 

be > 10% of the charge mass, which corresponds to an atom concentration of n C -- 1022 cm -3. With such strong nonequilibrium, 

virtually every particle collision must lead to their merging into one another, i.e., the initial stage of particle growth must be rapid 

coagulation. 
The Smolukhovskii theory of rapid coagulation [9] brings us to the following results. The mean particle mass (in the units 

of mass of the carbon atom) increases linearly over time [10]: 

<m) ~ Knct, 

where the coagulation constant K = 4kT/3r/; r/is the viscosity of the detonation product. Let us note that because of the great 

density of the medium, particle motion, even of the smallest particles, proceeds in the diffusion Stokes regime. This serves to validate 

the Smolukhovskii theory for all particle sizes. In a rarefied medium such as, for example, atmospheric air, for particles small in 

comparison to the intrinsic Brownian mean-free path, coagulation is slightly accelerated (the free-molecular regime) [11]. 

We will take the temperature T ~ 3000 K of the detonation product (DP) and the viscosity r / =  10 .-2 poise [104 dynes/cm 2] 

on the basis of computations presented in [12] (the elementary gas-kinetic estimate from [13] yields 3.10 -3  poise). Then the product 

Kn C ~ 1012 1/sec. Within the time t H - 1 #sec particles consisting, on the average, of 106 atoms with dimensions of - 2 0 0  ~ must 

be formed. Indeed, characteristic is a particle dimension of 40 .k  i.e., the mass is smaller by 2 orders of magnitude. At the same 

time, the experiment from [5] shows no relationship between particle size and t H (proportional to the dimensions of the charge). 

Consequently, the growth of compact particles must be limited. 
Furthermore, we will assume that two particles will combine with one  another when they meet, provided that at least one 

of these contain atoms smaller than m 0 = 103, i.e., in terms of size <20/%,. There are a number of arguments in favor of such 

a condition [2], in particular, a reduction in the effective melting temperature for small particles [14]. As a result, small particles 

may react in the manner of liquid droplets, whereas large panicles will not enter into combination. An analogous effect is achieved 

by the rise in fluctuations for small particles and the increase in the relative role of the surface. Of  course, a realistic transition 

from unitary to zero probability of panicle combination will not be pronounced, and the characteristic value of m o should br understood 

as a quantity chosen on the basis of its order of magnitude. The model being discussed here will therefore serve as a first approximation, 

and its use is justified by the imprecision with which the characteristics of  the medium and of the coagulation process are known. 

Let us introduce the concentration n m for particles containing m atoms. The Smolukhovskii system of equations has the form 
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Fig. 1. Distribution of concentrations through the mass with particle merging limited [curves 1-3 

correspond to the dimensionless time t 1 = m0 lj2 = 31.6, t 2 = (10m0) 1/2 = 100, and t 3 = 10m01/2 

= 316; the arrow indicates the m 0 boundary above which large-particle merging is forbidden]. 

Fig. 2. "Frozen-in" distribution of particles by size for various values of the reaction time t r [curves 

1-3 have been derived from distributions 1-3 in Fig. 1 and correspond to the values for the reaction 

times within which carbon is released: t r = 1, 10, and 100 nsec; the boundary dimension r(m0) 

is taken as unity and the curves are normalized to a single amplitude]. 

d'-'F K ]" j .m_Sn)nm_]--  2n~ " b~.,dz~ + S,~. 
, j = l  

The first term in the parentheses is the speed with which particles of mass m appear  out of various j + (m - -  j) combinations, while 

the second term describes the reduction in the number of m particles owing to reaction with any other particle. The factor Fj, m 

= (rj + rm)Z/4rjrm takes into account the difference in the dimensions r of particles with masses j and m. For  identical particles 

we have Fj• = 1, while for particles which are different from one another there is a rather weak function of the mass ratio (for 

example F t,10 = 1.155). The quantity S m describes the influx of carbon particles during the course of  the chemical reaction. Assuming 

uniform release of single atoms during the reaction time t r, we will write S 1 = nc/t  r and S i = 0 for i > 1. The prime indicated 

at the summation signs denote that t least one of the colliding particles must be smaller than m 0 (the remaining terms are dropped). 

Let us turn to dimensionless quantities by introducing the units of time ( t r /Knc) l~ and concentration (nc/Ktr) l/z, and here, 

for the dimensionless concentrations and times we will retain the earlier notation. Then, until conclusion of the reaction we have 

M I M,, ) dHm ~ 
= 9 F ; , m - j n j n , n - 3 - -  nm X Fj.~.d~; + 6m,1. (1) 

dI 
\ j-~.l 

Here M t = min (m/2, mo); M 2 = m 0 for m > m 0, M 2 = oo for m < m0; 5m, 1 is the Kronecker delta. 

The solution of the system in the absence of limitations on combination was studied analytically in [15] for 1~, m = 1 and numerically 

in [16]. For  the dimensionless t ime t ~ 5 a distribution of n m ~ m -3/2 is worked out. Only the boundary at which this function 

is curtailed will subsequently depend on time: m b -- t 2. A gasdynamic analogy is appropria te  here: the wave generated by the 

influx of particles is propagated along the "axis of masses" at the origin of this axis. 

When m b reaches the order  of m 0, i.e., for the time t > m01/2 the prohibit ion against combination sets in for large particles. 

However, small particles (m < m0) continue to combine with large particles. As a result, the spectrum of the masses, although 

more slowly,'continues to change. The qualitative behavior of the spectrum for the case in which m >> m 0 can be understood 

if we assume that m is a continuous variable. Then 

o 
On m .i 2 O'n m 

r ~ - i  = nrn - -  ] ~ + 2 Om ~ 

(the series expar~sion is effective, since j < m 0 << m). Moreover, we assume that Fj,m_ j = Fj, m. As a result, we derive the simple 

equation 

an m On m ~ ~nrn  
Ot + C ~ = Om ~ 
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Fig. 3. Cluster--cluster association. 

m o m 0 

where C = 2 ~ ]rT, jFj., , ,  ,v = ~ ]2njFj.m depend on time through the spectrum of sizes nj for particles and on mass through 
j=l j=l 

Fj. m. Both of these are weak functions, so that in first approximation we have an equation with constant factors. We should anticipate 

the appearance of a n(m --  Ct) wave, spreading out as a consequence of the viscosity v. 

The numerical solution of system (1) demonstrates the origination at the boundary m = m 0 and subsequent propagation of 

the wave (Fig. 1). Curve I when t = ~ virtually "does not notice" the boundary m = m 0, while on the curves 2 and 3 (t = 

and ~ )  concentration at the boundary drops sharply. Nevertheless, the velocity of the wave is nearly that of  the value calculated 

from the unperturbed distribution. We note that when t > ~m 0 the main mass is concentrated in the large particles, whereas a 

a large portion of the concentration is made up of small particles. 

The dimensionless time for the conclusion of the reaction 

If we interrupt the reaction at the instant at which it reaches the distribution shown in Fig. 1, curves 1-3 will correspond to various 

reaction times: t r = te2/Knc = 1, 10, and 100 nsec for t e = ~ ,  ~ ,  and ~ .  The true reaction time will be smaller 

than the gross time 0.1 #sec (for example, if the reaction involves the burning out of the hot spot). At the end of the reaction, 

within a time of the order ~ the small particles "die out" and a frozen distribution sets in, such as that shown in Fig. 2 in dependence 

on particle size. In all of  the cases the range of sizes is quite narrow. 

The assumed release of carbon in the reaction in the form of single atoms is not fundamental. In the release of larger fragments 

(but, of course, small in comparison to m0) the results do not change. The "instantaneous" release of carbon (t r = 0) yields a result 

that is close to t r = 1 nsec (see Figs. 1 and 2, curves 1). Thus, limiting coagulation makes it possible to achieve a particle size 

nearly that of  what is actually observed. Varying the parameters m o and t r makes possible a more precise experimental fit. It is 

obvious that the "smearing" of m 0 leads to a broadening of  the spectrum. 

In the case of  high temperatures in the zone of  the detonation wave where coagulation occurs, the parameter m 0 increases. 

The dimensions of the compact particles will then increase slightly. Moreover, for certain explosive compositions it may be possible 

to achieve liquid-phase stability parameters (see, for example, [3]), and we might expect the formation of considerably larger compact 

particles. The imprecision of the phase diagram and of  the temperature of the detonation product for the time being prevents 

us from indicating any explicit examples; however, it is a good idea to continue our research along these lines. 

The second stage (formation of aggregates of small compact particles) begins in parallel with the conclusion of the first stage. 

At least, at the beginning of this process it is natural to assume that when any two clusters encounter one another, they will link 

up, preserving their individuality. We know [10, 17] that with such a cluster---cluster association fractal structures are formed. 

In this case, the cluster mass Z (the quantity of particles within the cluster) and the dimension R (in units of  the diameter of a 

single compact particle) will be linked by the relationship 

Z ~ R  ~, 

where D is the fractal (usually a fraction) dimension which is smaller than that of  the Space. Numerical simulation and experiment 

for the described conditions yields values of  D = 1.78-2.1, i.e., with an increase in the size of the cluster its average density is reduced 

(the fraction of  voids increases). 

Figure 3 illustrates aggregation in two-dimensional space. A "box" consisting of  31 x 31 cells contains 70 particles, and these 

move sequentially in randomly chosen directions. The particles which are located in adjacent cells combine and then move on 

together. Figure 3a shows the onset of  this process, as several small clusters are formed. In a later stage (Fig. 3b) we see a large 

cluster to which, after all is said and done, all of  the remaining particles connect. Large aggregates in two-dimensional space exhibit 
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dimensionality of 1.44 [17] and, consequently, are markedly rarefied. At an original particle concentration of only 7% the dimension 

of the aggregate in Fig. 3b is of the dimensional order of the box. 

Let us qualitatively examine the formation of  aggregates in cluster---cluster association. The Smolukhovskii system of equations 

is also suitable for this process. If we neglect the polydispersion of  the clusters (assuming that Fj, m = 1) and summing all of the 
equations in (1), for the aggregate concentration A we obtain 

dA dP 
tlt dt A~ 

where P represents the concentration of compact particles (solitary clusters). On conclusion of the reaction dP/dt = 0 and, consequently, 

A -- 1/t. The accumulated quantity P -- mo "q/2, as is clear from the above-cited distribution n m -- m -3/2. The average number 
of particles in the cluster will then be 

z = I ' I A  ~ t l  

or in dimensional units Z = t/r, r = ~ .  

When we take into consideration hydrodynamic expansion, the time t should be limitd to tH, so that the maximum Z -- tH/r 

-- 100 for t H = 1 psec, t r = 100 nsec, r = 10 nsec. The cluster size R - Z 1/D - Z 1r2 - 10 particle dimensions, or 300-400/~ 

The standard method of investigating fractal structures is the method of small-angle x-ray scattering (SAXS). Scattering through 

an angle 0 corresponds to the transmitted pulse q --- 4~r/),.sin (0/2), whose reciprocal is the characteristic probe dimension. In 

the fractal interval of  dimensions the intensity of scattered radiation t -- q--D [17], which allows us to determine the scale of  D. 

The measurements were carried out by V. N. Kolomiichuk (The Catalysis Institute, Siberian Branch, Academy of Sciences of the 

USSR). The radiation wavelength is 1.54 ~ (CuKc,), and the range of scattering angles is --7' < 20 < 7 ~ The intensities measured 

for the "orange peel" geometry of  the experiment were recalculated for "spot source" conditions. Figure 4 shows the results for 

two diamond powder specimens, such as were obtained in various experiments. Curve segments with a slope of nearly--4 correspond 

to scattering in individual particles (the Poroda regime). In the interval 5.10 --3 < q < 3.10 -2  1/A the slope indicates a fractal 

scale of D ~ 1.9, which corresponds to the cluster--cluster association. The boundaries of  the fractal interval allow us to evaluate 

the characteristic dimensions l/q of a particle and an aggregate (30 and 200 A). Analogous results were obtained for mining specimens 

(a mixture of diamonds and graphite), taken for analysis subsequent to an explosion without chemical purification. 

Anoiher approach to the analysis of the SAXS involves an attempt to obtain the diamond particle distribution function on 

the basis of size [5]. It was assumed here that the scattering proceeds independently on individual spherical particles. For the 

distribution function f(R) we then have the integral equation 

I (q) = ~ j (n) IR Cq) dR, 
0 

where IR(q) = (3 sin (qR) - -  qR cos (qR))2/q 6 represents the intensity with which a sphere of dimension R accomplishes scattering. 

Such types of inverse problems, as a rule, are not stable. This is expressed in the fact that owing to the errors in the recording 

of the experimentally measured quantities and in approximation of the finite-sum integral large errors may arise in the unknown 

functions. In particular, in the problem being considered here the f(R) graphs exhibit oscillation for large R. 

For a more detailed analysis of  the situation, we undertook independent computation for the determination of  f(R). As an 

example, we processed the experimental SAXS data shown in Fig. 4. We used the Phillips regularization method [18] with minimization 
of the functional 

( ) o 

(l) ([) : l (qi) - -  ~ [ ( R j )  IBj  (q~) AI~j -'1.- 19 Rm - d l l ,  
i : l  j = l  R1 

where n is the number of experimental points; m is the number of discretization points in the unknown function f(R); p is the 

regularization parameter. 

The results obtained are shown in Fig. 5. Curve 1 represents the reproduced particle distribution function based on particle 

size. We can see that the primary peak occurs at dimensions of ~30 A. Despite all the attempts to vary the regularization parameter, 

there existed oscillations in the solution for large R, and additionally, there were negative values. 
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Fig. 4. X-ray radiation scattering intensity, referred to a "spot source," as a function of the transmitted pulse 

q [the slopes of the straight lines: (--1.94 and --4.18) for the first specimen and (--1.89 and ---4.10) for the 

second specimen]. 

Fig. 5. Distribution of diamond particles by size expressed as the function f(R) and the control calculations 

expressed as the function I(q). 

Fig. 6. X-ray Scattering intensity from a set of fractal clusters (the solid line represents theory, while the points 

represent experiment). 

Based on the found distribution f(R) for control purposes we calculated the intensity l(q) (see Fig. 5, curve 2), which virtually 

coincides with the original experimental points. Although the oscillations in f(R) are small, their contribution to the scattering 

is significant. As an example, we calculated the SAXS intensity for the  primary peak (R < 120/~) and the nonnegative portion 

of f(R) (see Fig. 5, curves 3 and 4). For q < 3.10 --2 1/,t~, in the place of the fractal segment (D ~ 2), existing in the experimental 

data, we observe a pronounced elevation in I(q) in the latter case, while the substance with a constant concentration of noninteracting 

particles enters the scattering regime in the former case. 

The oscillations in f(R) can be explained as an "attempt" through the algorithm to reflect the appearance of structures in 

the fractal region. At the same time, in the Poroda regime (an area of  scattering independent of the particles) the derived distribution 

function better describes the experiment than does the monodisperse (quite narrow) distribution. Apparently, a complete representation 

of the system is offered by a combination of these two approaches. For example, Fig. 6 shows the results from the scattering of 

a number of clusters with D = 2 and various sizes for the particles making up these clusters, said particles subject to the distribution 

in the primary peak (R < 120 Zk) shown in Fig. 5. Agreement with experiment is virtually complete. 

The results of  the experiment and the theoretical estimates are in good agreement with the hypothesis related to the formation 

of fractal structures even prior to the dispersion of the detonation product. Let us indicate the consequences of  these fractal structures: 

an aggregate of lower average density occupies the "excess" space. With a true volumetric condensed-phase fraction % the "swelling" 

leads to cz 0 - % R  3"-D -- cz0R (for D ~ 2). In the case of a 0 ~ 0.1 and R - 10 we have cz ~ 1 and the clusters will consequently 

come into contact with one another (i.e., gelation is possible). The condition cz - 1 limits the dimensions of  the cluster, regardless 

of t H. In the disintegration of the medium (DP) the gel will tear apart in the decompression wave. Within the specimens conserved, 

out of the original aggregates, structures of the following microscopically observed sequences [4] collect. We should note that these 

processes may be burdened by phase transitions and by a change in the rheology of the medium. 

Let us recall that in the work of Hayes [19] the electrical conductivity of  the explosive detonation product with a high carbon 

content was explained by the formation of a three-dimensional grid out of  graphite particles. Fractal concepts make such a picture 
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entirely natural. This alters the usual view of the detonation products. At least until noticeable expansion, they are not a dust-laden 

gas, but rather a gas-saturated porous medium. 
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